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Abstract

Model transformations are an important cornerstone of model-driven engineering. Thus, various model transformation
languages have been proposed, most of which follow the rule-based paradigm. The application of transformation rules
is realized either following the apply-as-long-as-possible strategy or an orchestration of the rules has to be provided.
However, two main limitations arise from following these two approaches. First, the goals of the transformations are
implicitly hidden in the rule encoding and their orchestration specifications. Second, manually finding the best rule
orchestration for a particular scenario is a complex problem due to the high number of rule combination possibilities.

To tackle these limitations, we present in this paper a novel framework which builds on the non-intrusive integration
of optimization and model transformation technology. This integration allows for search-based exploration of rule
applications and to make the goals of transformations explicit. In particular, we formulate the rule application problem
as an optimization problem. The proposed framework provides several algorithms for local and global searches of rule
applications guided by single and multiple objectives expressed in terms of models. We present different instantiations
of our framework to demonstrate its feasibility and benefits by several case studies in the field of software engineering.

Keywords: Model transformation; Rule orchestration; Model-driven Software Engineering; Search-based Software
Engineering

1. Introduction

Transformations are an important concept in computer science in general and in software engineering in
particular, since indeed, computation can be viewed as data transformation. The same situation occurs in
Model-Driven Engineering (MDE) [1], which has model transformations at its heart [2]. In MDE, models
are the central artifacts which describe complex systems from various viewpoints and at multiple levels of
abstraction using appropriate modeling formalisms. Model transformations provide the essential mecha-
nisms for manipulating and transforming models, e.g., abstracting software models such as class models
from existing source code using reverse engineering techniques [3]. In fact, several distinct categories of
model transformations have been identified [4, 5]. In broader terms, there exist declarative, imperative, and
hybrid approaches. In any case, most of them are expressed by means of transformation rules.

A crucial aspect when dealing with model transformations is the orchestration of the rules that compose
them, i.e., the order in which they are executed. This orchestration can be defined implicitly or explicitly [4].
In an implicit orchestration, the developer has no control over the order in which rules are triggered. This
task is delegated to the transformation engine. This is typically the case with purely declarative languages,
such as QVT Relations [6] and many graph transformation languages. Other languages offer mechanisms
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to explicitly define the set of rule orchestrations. For instance, ATL [7] is a hybrid transformation lan-
guage that offers the possibility of partially orchestrating the rules that compose a model transformation by
explicitly making calls to so-called lazy rules in the declarative part. Other languages provide more dedi-
cated mechanisms to schedule rules, such as VIATRA [8], which offers rule scheduling using abstract state
machines.

When developing a model transformation, a modeler defines rules to manipulate an input model. How-
ever, reasoning about how these rules can be applied to retrieve a model with certain characteristics is a
non-trivial task suffering from two major drawbacks. First, the effect a rule application has on the charac-
teristics of the resulting model is implicitly hidden in the behavior encoded by the rule and may depend on
previously applied rules. In fact, a given rule may check for some information produced by another rule.
Second, the number of rule combinations may be very large or even infinite, especially when considering
the input parameters a rule may have, making a manual exploration of rule orchestrations very difficult.

Based on ideas that we have initially outlined in previous work [9] on combining Search-Based Software
Engineering (SBSE) [10] and MDE, in this paper we consider the problem of finding the best orchestration
for a given set of transformation rules as an optimization problem. Thereby, we aim at applying SBSE
techniques for solving a reoccurring problem in the MDE domain, while at the same time we aim for a
loose coupling between both worlds. In this sense, models and model transformations are defined in the
model engineering technical space [11], and the orchestration of the rule applications is delegated to search-
based optimization technologies. Depending on the desired goals for a particular scenario, our approach
finds one or many solutions, i.e., rule application sequences. Doing so allows us to reuse the same set
of transformation rules for several scenarios, to explicitly define the transformation goals for each specific
scenario, and to automatically find the best orchestration of rules. Furthermore, by combining SBSE with
model transformations, the developer can stay in the model engineering technical space. This means that
the problem, the search configuration input parameters, and the computed solutions are defined at the model
level.

In this paper, we propose an algorithm-agnostic approach called MOMoT (Marrying Optimization and
Model Transformations) to encode model transformations as optimization problems and provide a loosely
coupled framework bridging two existing and well-established base frameworks. Our framework is de-
veloped within the Eclipse Modeling Framework (EMF)1 and builds upon Henshin2 [12] to define model
transformations and the MOEA framework3 for providing optimization techniques. Henshin is a graph
transformation engine that provides a graphical notation for defining model transformations as graph trans-
formation rules. The MOEA framework provides several multi-objective evolutionary algorithms, such as
NSGA-II [13], NSGA-III [14], and ε-MOEA [15], as well as tools to execute and statistically test these
algorithms. In addition, our framework integrates other optimization techniques, including for instance
single-objective and local search techniques, and provides hooks for integrating further techniques.

The remainder of the paper is structured as follows. In Section 2 we give a short introduction into
model transformation and the Henshin framework. Section 3 introduces our approach and describes how
the framework has been developed, in particular, which techniques we provide and how the framework can
be extended. Section 4 describes the evaluation of our framework, before we give an overview on related
work in Section 5. Finally, Section 6 concludes the paper with an outlook on future work.

2. Prerequisites: Models, Meta-models, and Model Transformations

In this section, we give a short introduction to model transformation based on an example.

2.1. Model Transformation
In the MDE field, there are many different model transformation kinds [4] such as model-to-model, text-to-
model, and model-to-text transformations. A model transformation can further be categorized as out-place

1http://www.eclipse.org/modeling
2http://www.eclipse.org/henshin
3http://www.moeaframework.org

http://www.eclipse.org/modeling
http://www.eclipse.org/henshin
http://www.moeaframework.org
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if it creates new models from scratch or as in-place if it rewrites the input models until the output models
are obtained. In this paper we focus on in-place model-to-model transformations, which can be expressed
using graph transformation rules. The applicability of graph transformations for model transformations
rests upon the fact that most models exhibit a graph-based structure, e.g., consider the underlying structure
of UML class diagrams or state machines, whereas the meta-models of the models act as type graphs. The
initial graph representing a model evolves through the application of graph transformation rules until the
execution stops and we obtain the output graph, i.e., the output model. There is a plethora of frameworks
and languages to define these kinds of transformations, such as Henshin [12], AGG [16], Maude [17],
AToM3 [18], e-Motions [19], and VIATRA [8].

Henshin. In this paper we use Henshin [12] to instantiate our approach, since it offers a rich language and
associated tool set for in-place transformations of Ecore-based models. Ecore is the central meta-language in
EMF that defines the concepts that can be used to create modeling languages. However, please note that our
approach is not conceptually limited to Henshin. Henshin comes along with a powerful declarative model
transformation language that has its roots in attributed graph transformations and offers the possibility for
formal reasoning. It also provides the concept of transformation units to define control structures for rule
applications in a modular way. Transformation rules are considered a special kind of transformation unit,
which can have input parameters similar to what is known from programming, e.g., references to model
elements or primitive values. In Henshin, as well as in many other graph transformation languages, a trans-
formation rule consists of left- and right-hand side graphs, which describe model patterns to be matched and
changes to be applied, respectively. Rules may also have positive and negative application conditions (PACs
and NACs), which specify the mandatory presence and absence of graph patterns before the rule may be
applied, respectively. Graphs are attributed, and nodes, edges, and attributes refer to EClass, EReference and
EAttribute classes of the Ecore meta-model. Other transformation units provide mechanisms to orchestrate
these rules, e.g., sequential units, priority units or amalgamation units [20]. Due to the different possibilities
of orchestrating rules in Henshin, a mechanism that automatically determines the optimal execution order
of rules for a specific scenario may ease the work of the transformation designer substantially.

2.2. Transformation Example

The running example we use to describe our approach in this paper consists of a system of stacks, where
each stack can have a different number of boxes referred to as load. The meta-model that represents the
stack system is depicted in Figure 1a. Every stack in the system has a unique identifier, a number that
indicates its load, and is connected to a left and right neighbor in a circular manner. A concrete instance of
this meta-model composed of five stacks with different loads is shown in Figure 1b.
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(b) Instance Model in Abstract Syntax

Rule shiftLeft(fromId: EString, toId: EString, amount: EInt, fromLoad: EInt, toLoad: EInt) @StackModel

«preserve»
to: Stack

id = toId
load = toLoad->toLoad + amount

«preserve»
from: Stack

id = fromId
load = fromLoad->fromLoad – amount

«preserve»
left

SufficientLoadPrecondition:
amount <= fromLoad

(c) ShiftLeft Rule to shift load

Fig. 1: Stack System
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The figure depicts the abstract model syntax, i.e., the graph-based representation of the model informa-
tion modulo its notation. To manipulate this instance model we propose two basic rules which shift part of
the load from one stack either to the left or to the right neighbor. The ShiftLeft rule is shown in Figure 1c—an
analogous rule is used to shift parts to the right. Each rule has five input parameters: fromId, toId, amount,
fromLoad, and toLoad. While producing a match for this rule, all these input parameters acquire a value,
i.e., they are instantiated, and the rule can be applied. For retrieving these values, Henshin matches the
pattern in the rule consisting of nodes and edges with the model graph. Since stacks are nodes in the graph
and the left and right relationships are edges, they can be matched automatically and values for fromId, toId,
fromLoad, and toLoad can be set. However, how much load should be shifted (amount) requires input from
the user. Furthermore, the rule also contains a precondition, which ensures that the amount that is shifted is
not higher than the load of the source stack. This attribute condition is shown as an annotation in the figure.

2.3. Exemplary Transformation Execution Scenario

Let us assume we have a scenario where the goal of executing the transformation is to have a model where
the load among the stacks is equally distributed, i.e., a minimal standard deviation of the stack loads. In our
example (cf. Figure 1b) that would mean that each stack should have a load of five. Without defining control
structures for the rule applications, an as-long-as-possible execution of the rules would be exchanging parts
indefinitely because we can not specify a termination criteria in Henshin. Therefore we have to derive a
rule orchestration by hand. Assuming we do not know the standard deviation in advance, one possible rule
orchestration retrieved through trial-and-error is shown in Listing 1. Each rule application is represented
as a function call, the function name corresponding to the rule name and the arguments matching the rule
parameters shown in Figure 1c. However, there are many different rule orchestrations that lead to the same
result and the one we have found may not be the shortest one. Therefore, additional support in exploring
different rule orchestrations is needed. Our approach to provide this support is explained in the next section.

Listing 1: Textual representation of a solution for the Stack example

{ ShiftLeft ( 'Stack_4' , 'Stack_3' , 2 , 9 , 3 ) , ShiftLeft ( 'Stack_2' , 'Stack_1' , 3 , 7 , 1 ) ,
ShiftRight ( 'Stack_5' , 'Stack_1' , 1 , 5 , 4 ) , ShiftRight ( 'Stack_4' , 'Stack_5' , 1 , 7 , 4 ) ,
ShiftLeft ( 'Stack_3' , 'Stack_2' , 1 , 5 , 4 ) , ShiftLeft ( 'Stack_4' , 'Stack_3' , 1 , 6 , 4 ) }

3. Search-based Rule Application with MOMoT

This section gives an overview on the MOMoT approach and its required inputs and provided outputs.

3.1. MOMoT at a Glance

One way to efficiently explore the potentially huge rule orchestration state space of a problem domain,
which may even be infinite and multi-modal, is to apply SBSE techniques within model transformation
systems. We therefore propose a loosely coupled framework that provides a bridge between two types of
existing frameworks: one to encode model transformation problems and one for search-based optimization.
Reusing the existing functionality of these base frameworks as much as possible is the central principle
of our framework. This avoids the necessity for users to learn new formalisms and reduces the risk of
introducing additional errors through re-implementation. Furthermore, there is little to no delay in receiving
updates for bug-fixes, new functions, algorithms, or optimizations from the two existing frameworks.

As mentioned in the previous section, in this paper we build upon Henshin which supports model trans-
formations of Ecore-based models and the MOEA framework which provides a set of multi-objective evolu-
tionary algorithms with additional analytical performance measures and which can be easily extended with
new algorithms. While in the rest of the paper we discuss our framework in the light of these two base
frameworks, the approach itself is generic so that other frameworks may also be used.

An overview of our approach is depicted in Figure 2. Instead of manually deriving an orchestration of
transformation rules for a given scenario in the specific problem domain, dedicated search algorithms are
employed to calculate the orchestration of the rules based on a given set of objectives and constraints.
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Fig. 2: Overview of the MOMoT approach

To realize our approach, we need the following ingredients: (i) a generic way to describe the problem
domain and the concrete problem instance, (ii) an encoding for the solution of the concrete problem instance
based on model transformation solutions, and (iii) a random solution generator that is used for the gener-
ation of an initial, random individual or random population by many search-based algorithms. To further
support the use of multi-objective evolutionary algorithms, we additionally provide (iv) generic objectives
and constraints for our solution encoding, and (v) generic mutation operators that can modify the respective
solutions. For supporting local search algorithms, we provide a base interface and implementation as well as
different neighborhood functions. In the following sections, we describe the different parts of our approach
on the basis of the Stack example introduced in the previous section.

3.2. Problem encoding
As typical in model-driven engineering, the problem domain itself is defined as a meta-model representing
a modeling language (cf. the meta-model of the Stack problem depicted in Figure 1a). Based on the specific
problem domain, a user can define both concrete problem instances (cf. Figure 1b) and transformation rules
that specify how problem instances can be modified in order to produce a solution (cf. Figure 1c).

Objectives and Constraints. The quality of each solution candidate is defined by a fitness function that
evaluates multiple objective and constraint dimensions. Each objective dimension refers to a specific value
that should be either minimized or maximized for a solution to be considered “better” than another solution.
In our approach, we can distinguish between objectives that are problem domain-specific, e.g., minimizing
the standard deviation of the loads in a Stack domain, and objectives that relate to the solution encoding, e.g,
minimizing the number of transformations that should be applied to achieve a solution. An objective can be
defined either by providing a specific Java method returning the respective objective value or by specifying
model queries in the Object Constraint Language (OCL). Listing 2 shows the OCL query for retrieving the
standard deviation of the loads in the Stack domain. OCL is a standardized and formal language to describe
expressions, constraints and queries on models that can be automatically evaluated by using Eclipse OCL.
Additionally, a solution candidate may be subjected to a number of constraints in order for the solution
to be valid. Depending on the algorithm, invalid solutions may be filtered out completely or may receive
a low ranking in relation to the magnitude of the constraint violation. As with objectives, we distinguish
between domain-specific constraints, e.g., a stack may never have a negative load, and solution-specific
constraints, e.g., a specific transformation rule has to be applied. Again, we can leverage OCL to specify
constraints for the problem domain or provide a Java method returning the magnitude of the constraint
violation. However, as we are dealing with a graph transformation system, we can also make use of the
expressive power of the graph transformation engine itself by specifying NACs directly in the rules. By
doing so, we can effectively avoid the generation of invalid solution candidates, resulting in a potentially
smaller search space. However, due to the cost of graph pattern matching, the application of NACs may also
introduce an additional overhead, depending on the NACs complexity and the number of pruned solutions.

Listing 2: OCL query on standard deviation of stacks

package stack -- complement the declarations of the stack package described by the meta-model
c o n t e x t StackModel -- subsequent model elements are defined here

-- attribute definitons
def : LoadSum : Real = stacks−>collect ( load )−>sum ( )
def : NrStacks : I n t e g e r = stacks−>size ( )
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def : MeanLoad : Real = LoadSum / NrStacks
def : DeviationSum : Real = stacks−>collect ( ( load−MeanLoad ) * ( load−MeanLoad ) )−>sum ( )
def : Variance : Real = DeviationSum / NrStacks
-- query
Variance . sqrt ( ) -- square root function may be defined externally

endpackage

In summary, the problem domain is represented as a modeling language, from which a concrete problem
instance model is created. Transformation rules defined upon the language can modify the model instances.
The objectives that should be achieved may be defined via model queries in OCL. The constraints that a
possible solution must fulfill can also be specified in OCL, but may also be encoded as NACs directly in the
rules.

3.3. Solution representation
A solution in general consists of a number of (decision) variables that are optimized by the respective
SBSE algorithm, a number of constraints that need to be fulfilled in order for the solution to be valid, and
a number of objective values, one for each of the objective dimensions evaluated by the defined fitness
function. Additional information about a solution such as the solution rank assigned by some algorithms
may be stored in the attributes of that solution, which serve as a key-value storage. As we deal with a
transformation problem, there are two common ways in representing a solution. Either a solution is an
ordered sequence of rule applications or it is the model resulting from the application of that sequence.
We chose the first encoding as we consider it more flexible, because the resulting model can always be
calculated from the sequence of configured rules and may be stored in a solution as attribute to avoid re-
execution. Therefore, a decision variable in our solution is one rule application. A rule application refers to
one specific transformation rule plus the values for all parameters of that rule that make the rule applicable.
As a special case, we also allow the use of rule application placeholders, i.e., rule applications that are not
actually executed and do not have any effect. This allows the actual solution length to vary in cases where
the solution length must be fixed. An example Stack solution with a sequence of two rule applications and
one placeholder is depicted in Figure 3.

Parameters. When dealing with model transformations, we can distinguish between two kinds of rule pa-
rameters: those that are matched by the graph transformation engine (matched parameters), and those that
need to be set by the user (user parameters). The former are often nodes within the graph, whereas the latter
are typically values of newly created or changing properties. In the Stack example, the only user parameter
is the amount of load that should be shifted from one stack to another. When applying a rule manually, a
user can provide a value for such a parameter either programmatically or via a dedicated user interface.

Random Solution Generation. To create random solutions with a high variance of parameter values to cover
as much area of the search space as possible, we provide random parameter value generators for most prim-
itive values. By default, the range of these values is the range of the data type of the respective parameter,
e.g., for Integer in Java the value can range from −231 to 231 − 1. Although an efficient search algorithm
should quickly remove values that are not beneficial in a specific scenario, the user may restrict this range
as part of the exploration configurations (cf. Section 3.4) to prune such unfruitful areas of the search space
in advance. Furthermore, the user can define which matched parameters should be retained as part of the
solution. All other parameters are re-matched by the graph transformation engine when the respective rule
is executed again. Considering the Stack example, the user has probably an interest in preserving the stack
from which the load is shifted (fromId parameter) and the stack to which the load is shifted (toId parameter).

Variables  Attributes  Objectives  Constraints  Result Model 

rule   = shiftLeft 
fromId = 'Stack 2' 
toId   = 'Stack 1' 
amount = 3 

Placeholders 

AggregatedFitness = 3.09762 
CrowdingDistance  = 1.21945 
Executions = [true, true, true] 
Rank = 0 

StdDev = 2.09762 
Length = 1.0 

4  4  3  9  5 

Variables  Objectives  Constraints  Attributes 

rule   = shiftLeft 
fromId = 'Stack 2' 
toId   = 'Stack 1' 
amount = 3 

rule   = shiftLeft 
fromId = 'Stack 4' 
toId   = 'Stack 3' 
amount = 3 

Placeholder 

StdDev = 0.89443 
Length = 2.0 

Executions = [true, true, true] 
AggregatedFitness = 2.89443 
CrowdingDistance  = 1.01801 
ResultModel =   4  4  3  9  5 

Variables  Objectives  Constraints  Attributes 

rule   = shiftLeft 
fromId = 'Stack 2' 
toId   = 'Stack 1' 
amount = 3 

rule   = shiftLeft 
fromId = 'Stack 4' 
toId   = 'Stack 3' 
amount = 3 

Placeholder 

StdDev = 0.89443 
Length = 2.0 

Executions = [true, true, true] 
AggregatedFitness = 2.89443 
CrowdingDistance  = 1.01801 
Rank = 0 
ResultModel =   4  4  3  9  5 

Fig. 3: One solution with two rule applications for the Stack example
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Solution Repair. Even though constraints can be used to specify the validity of solutions, a solution that is a
product of re-combining two other solutions might have rule applications that are not executable. By default,
rules that can not be executed are ignored in Henshin. However, this behavior might not be satisfactory in
some cases. Therefore we provide two repair strategies in our framework. The first one replaces all non-
executable rule applications with rule application placeholders, preventing Henshin from executing them and
removing the opportunity to use them again in another solution created through re-combination. The second
strategy replaces each non-executable rule application with a random, executable rule application. This may
have an impact on the overall solution quality as other rule applications might become non-executable and
may also need to be replaced. Furthermore, the resulting solution may be a solution that is quite different
from the original solution. Of course, depending on the chosen algorithm and the actual constraints of the
solutions, a user can also select a dedicated re-combination operator that is able to consider some constraints,
e.g., the partially matched crossover (PMX) [21] can preserve the order of variables within a solution.

3.4. Exploration Configuration
As mentioned previously, the proposed approach is algorithm-agnostic. Therefore additional algorithm-
specific exploration options need to be configured by the user. Reusing MOEA, we can use the following
evolutionary algorithms out of the box: NSGA-II, eNSGA-II, NSGA-III, eMOEA, and Random Search.
Furthermore a set of selection and crossover operators are provided, which can also be reused. Additionally,
we provide a base for local search algorithms from which we have implemented the Random Descent and
Hill Climbing algorithms as proof-of-concept. A user may choose to develop further algorithms or integrate
existing ones from the jMetal library4, the PISA library5 and the BORG MOEA Framework6, for which
adapters or specific plug-ins are already provided by MOEA. For illustration purposes, we discuss the op-
tions of evolutionary search configurations and local search configurations for the Stack example. Listing 3
depicts the common options of those two configurations.

Listing 3: Textual representation of generic search configurations for the Stack example

initialModel = 'model_five_stacks.xmi' ; // as depicted in Figure 1b
rules = 'stack.henshin' ; // as depicted in Figure 2
rules . shiftLeft . amount = new RandomInteger ( 1 , 5 ) ; // bounds for user parameter
rules . preserveParameters = [ rules . shiftLeft . fromId , rules . shiftLeft . toId ] ; // matched parameters
solution . repairer = new PlaceholderSolutionRepairer ( ) ;

Evolutionary Search Configuration. Evolutionary search algorithms are a subset of population-based search
algorithms that deploy selection, crossover, and mutation operators to improve the fitness of the solutions
in the population in each iteration (the first population is usually generated randomly). The selection op-
erators can be defined generically and choose which solutions of the population should be considered for
re-combination. An example for a selection operator would be deterministic tournament selection, which
takes n random candidate solutions from the population and allows the best one to be considered for re-
combination. The crossover operator is responsible for creating new solutions based on already existing
ones, i.e., re-combining solutions into new ones. Presumably, traits which make the selected solutions fitter
than other solutions will be inherited by the newly created solutions. In our case, each solution is repre-
sented as a sequence of rule applications for which many generic operators already exist, e.g., the one-point
crossover operator which splits two solutions at a random point and merges them crosswise. The mutation
operators are used to introduce slight, random changes into solution candidates. This guides the algorithm
into areas of the search space that would not be reachable through recombination alone and avoids the
convergence of the population towards a few elite solutions. To take the semantics of transformation rules
into account, we have introduced three dedicated mutation operators. The first operator replaces random
transformation rules by placeholders, reducing the actual solution length. The second operator applies a
final transformation rule on the resulting model without changing the actual solution length, and the third
operator varies the user parameters of a rule application based on the parameters bounds (cf. Section 3.3).

4http://jmetal.sourceforge.net
5http://www.tik.ee.ethz.ch/pisa/
6http://borgmoea.org/

http://jmetal.sourceforge.net
http://www.tik.ee.ethz.ch/pisa/
http://borgmoea.org/


8 / NASBASE 00 (2015) 1–16

Listing 4: Textual representation of an evolutionary search configuration for the Stack example

solution . nrVariables = 8 ;
fitness . objective [ 'Standard Deviation' ] = new OCLQueryDimension ( '...' ) ; // as shown in Listing 2
fitness . objective [ 'Solution Length' ] = new SolutionLengthDimension ( ) ; // actual length of solution
search = new NSGAII ( ) ;
search . populationSize = 5 0 ;
search . maxNrIteration = 100 ;
search . selection = [ new TournamentSelection ( 2 ) ] ;
search . crossover = [ new OnePointCrossOver ( 1 . 0 ) ] ; // application probability: 100%
search . mutation = [ new ParameterMutation ( 0 . 2 ) , new PlaceholderMutation ( 0 . 1 5 ) ; ] ;

Local Search Configuration. Local search algorithms maintain one solution at a time and try to improve it in
each iteration. Improvement depends on the solution comparison method the user selects, e.g., comparison
based on objective, constraint or attribute values. The initial solution may be given by the user or can be
generated randomly. In each iteration, the algorithm may take a step to a neighbor solution, i.e., a solution
that is a slight variation of the current solution. The calculation of neighbors from the current solution can
be done generically using a neighborhood function. How many neighbors are evaluated and whether only
fitter neighbors are accepted as the next solution depends on the respective algorithm. In our framework,
we provide two neighborhood functions. Following the principle of re-use, the first function uses one of
the previously defined mutation operators to introduce slight changes into the current solution. Depending
on the operator, this function may produce an infinite number of neighbors, e.g., when varying floating
point rule parameter values. In such a case, an upper bound on the number of calculated neighbors can
be specified. The second neighborhood function adds an additional, random rule application to the current
solution, increasing its solution length. Here, a user may specify an upper bound on the solution length.

Listing 5: Textual representation of a local search configuration for the Stack example

fitness . objective [ 'Standard Deviation' ] = new OCLQueryDimension ( '...' ) ; // as shown in Listing 2
search = new HillClimbing ( ) ;
search . maxNrEvaluations = 2000 ;
search . neighborhoodFunction = new IncreasingNeighborhoodFunction ( 1 0 0 ) ; // maximum 100 neighbors
search . comparison = new ObjectiveComparison ( 'Standard Deviation' ) ;
search . initialSolution = new Solution ( 0 ) ; // empty solution

3.5. Analysis and Statistics

Besides the orchestration of the transformation rules, the resulting models from those rules and their cor-
responding objective and constraint values, further analytical information about the search process and the
results can be collected during the execution of an algorithm. This data can then be used to either influence
the execution of the algorithm itself or to perform advanced analysis techniques after the execution has fin-
ished. In our framework, we provide ways to print detailed information about the on-going search process
on the console and to terminate a single run of an algorithm depending on different criteria, e.g., after a
certain time limit has been reached or a given solution has been found.

For further analysis after the algorithm(s) have executed, we can re-use different mechanisms provided
by MOEA to compare two or more solution sets. Typically, one set is the so-called reference set which
contains the known Pareto optimal solutions and to which the other solution sets are compared. If the Pareto
optimal solutions are not known a priori, which is the case for many real-world problems, an approximation
to this set may be generated by executing different algorithms multiple times. By measuring the distance
of the found solution set to the reference set, we can calculate several indicators such as hypervolume,
generational distance or the maximum Pareto front error. Pairing this distance with statistical tests performed
by MOEA, we can evaluate the hypothesis that one algorithm is significantly better than another algorithm
in a specific scenario. Currently supported statistical tests include among others the Kruskal-Wallis One-
Way Analysis of Variance by Ranks test [22, 23] or the Mann-Whitney U test [23]. An example output of
a statistical analysis for the hypervolume indicator based on the configuration shown in Listing 4 is shown
in Table 1. We can see that all three algorithms perform equally well and that the statistical test indicates
that they are interchangeable with regard to this indicator (indifferent). All collected and calculated data can
also be used to plot graphs giving a better overview about the algorithm executions. Figure 4 depicts the
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NSGA-III ε-MOEA NSGA-II

Aggregate 0.314050 0.314050 0.314050
Min 0.219453 0.184262 0.219453
Max 0.314050 0.314050 0.314050

Median 0.314050 0.314050 0.314050
Values [ 0.219453, [ 0.184262 [ 0.219453

0.314050, 0.314050, 0.314050,
. . . ] . . . ] . . . ]

Count 50 50 50
Indifferent ε-MOEA NSGA-III ε-MOEA

NSGA-II NSGA-II NSGA-III

Table 1: Excerpt of Hypervolume statistics
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Fig. 4: Standard Deviation convergence for local search

convergence of the standard deviation fitness dimension over time for multiple local search execution runs
as configured in Listing 5. Each line corresponds to one run of the respective algorithm.

3.6. Implementation

We have implemented our approach by providing a bridge between Henshin and the MOEA framework. It
consists mainly of the encoding of the decision variables in the form of transformation rule applications.
The solution, the random solution generation, the created generic operators, and the additional solution
configurations rely solely on this encoding, independent of the actual model transformation engine. The
complete code as well as the examples presented in this paper can be found on our project website7.

4. Evaluation

In this section we present an evaluation of our approach based on three case studies. In particular, we are
interested in answering the following two research questions (RQ).

RQ1. Applicability: Is our approach applicable to classic problems in model-based software engineering?

RQ2. Overhead: How much overhead is introduced by our approach compared to a native encoded solution?

Case Study Design and Requirements. To answer RQ1 we evaluate our approach in three different case
studies that target different problem areas and differ in their level of complexity with regard to the rule size.
To answer RQ2, we compare our approach with a native encoding for one of the case studies. For each case
study we need the input in the format described in Section 3, i.e., an Ecore-based meta-model representing
the problem domain and Henshin transformation rules to manipulate instances of that problem domain. All
case study experiments need to be conducted under the same conditions, i.e., running on the same machine
with equal search algorithms and operators. The case studies are explained in the next section.

4.1. Case Study Setup

This section explains the three case studies used to evaluate our approach and framework and to answer our
RQs. The first case study is from the Stack problem domain and has been introduced throughout the paper.
The second and third case studies represent classical problems of model-based software engineering.

Stacks. The problem domain is a set of stacks with different loads that are connected in a circular way. The
two objectives that should be minimized are the standard deviation of the loads and the solution length.

7https://code.google.com/p/momot/

https://code.google.com/p/momot/
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Modularization. This is a classic problem in software architecture design [24, 25, 26]. The goal of mod-
ularization is to group a number of classes that have inter-dependencies into modules or components to
minimize coupling and maximize cohesion. Coupling refers to the dependencies among classes of different
components and thus to the dependencies among the respective components. Typically, low coupling is
preferred as this indicates that each component covers separate functionality aspects of the system, improv-
ing the maintainability and testability of the overall system [27]. On the contrary, the cohesion within a
single component, i.e., the relations of classes within one component, should be maximized to ensure that
no class that is not part of the components functionality is included in that component. A problem instance
of this case study consists of a set of classes and their inter-dependencies. To manipulate this instance we
need to (i) create new components and (ii) assign classes to an existing component. A valid solution for the
modularization problem assigns each class to exactly one component and has no empty components.

Class Diagram Restructuring. The third case study is taken from the Transformation Tool Contest (TTC) of
2013 [28]. The aim of the TTC series is to compare the expressiveness, the usability, and the performance of
graph transformation tools along a number of selected case studies. Specifically, we use the Class Diagram
Restructuring case study [29, 30], which consists of an in-place refactoring transformation on UML class
diagrams. A problem instance consists of a set of classes and their attributes as well as possible inheritance
relationships between the classes. The goal is to remove duplicate attributes from the overall class diagram,
and to identify new classes which abstract data features shared in a group of classes in order to minimize the
number of entities, i.e., classes and attributes. The three ways used to achieve this objective are (i) pulling
up common attributes of all direct subclasses into the super-class, (ii) extracting a super-class for duplicated
attributes of classes that already have a super-class, and (iii) creating a root class for duplicated attributes of
classes that have no super-class.

4.2. Measures
To assess the applicability of our approach (RQ1), we use all three case studies as they are known problems
that have been extensively discussed in the literature. In particular, we consider our approach to be applicable
for a specific case study if the respective problem domain can be represented using our approach. This will
indicate whether the formalisms used in our approach, i.e., using meta-models and graph transformation
rules, are expressive enough for real-world problems. Finally, to assess the overhead of our approach (RQ2),
we compare the time it takes to obtain the solutions for a particular problem (total runtime performance) of
both our approach and a native implementation in the MOEA framework. The overhead of our approach
will be evaluated for the Stack domain by varying the population size parameter. To ensure the sanity of the
solutions, we evaluate if the retrieved solutions violate any constraint or have contradicting objective values.

4.3. Results
This section describes the experiments that we have conducted with the three case studies. Based on the
obtained results we discuss the answers to our research questions. All results are based on at least 20 runs of
the NSGA-II algorithm, which we deem sufficient for our overhead analysis, and all shown numbers are the
average of these executed runs. The artifacts created for this evaluation are available on our project website.

RQ1. To answer the first research question, we have modeled the problem domain of all case studies as
Ecore meta-models and have developed rules that manipulate instances of these meta-models.

The applicability of the Stack example has been shown throughout the paper. Applying the approach on
the input model shown in Figure 1b, we quickly find the shortest sequence of rule applications (three) that
leaves five pieces in each stack as well as the other solutions of length two, one and zero of the Pareto-set.

Regarding the Modularization case study, we have quickly modeled both the problem domain as a meta-
model with three classes and the transformation rules. Since both rules, i.e., creating components and
assigning classes to components, rely solely on random generation (of component names) and pure graph
pattern matching without any additional parameters, they can be directly implemented as transformation
rules. The necessary objectives and constraints can be specified using simple Java methods. We have
executed different problem instances and manually performed a successful sanity check.
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Rule createRootClass(pName: EString, e1: EString, e2: EString) @model

Rule shiftLeft(fromId: EString, toId: EString, amount: EInt, fromLoad: EInt, toLoad: EInt) @StackModel

«preserve»
to: Stack

id = toId
load = toLoad->toLoad + amount

«preserve»
from: Stack

id = fromId
load = fromLoad->fromLoad – amount

«preserve»
left

SufficientLoadPrecondition:
amount <= fromLoad

«preserve»
: Entity

name = e1

«forbid#1»
: Generalization

«create»
: Entity

name = 'Entity_' + pName + '_' + e1 + '_' + e2

«delete»
: Property

name = pName

«create»
: Generalization

«create»
: Generalization

«create*»
: Generalization

«preserve»
: Entity

name = e2

«create»
: Property

name = pName

«preserve*»
: Entity

«delete»
: Property

name = pName

«delete*»
: Property

name = pName
«preserve»
: Type

«forbid#2»
: Generalization

«forbid*#3»
: Generalization

Fig. 5: Rule to create a root class for a common attribute pName with three NACs ( f orbid) and one nested rule (’∗’)

The Class Diagram Restructuring case study is the most complex one with regard to rule complexity.
While it is possible to translate all three manipulations into graph transformation rules, each rule needs
at least one NAC and consists of at least one nested rule. The rule for creating root classes is shown in
Figure 5. A nested rule in Henshin (indicated by a ’∗’ in the action name in Figure 5) is executed as often
as possible if the outer rule matches. Therefore nested rules can lead to a large set of overall rule matches,
making the application of such rules more expensive. The NACs have been implemented both directly as
graph patterns (indicated as forbid action in Figure 5) and as OCL constraints. For example, the NAC of
pulling up attributes shown in Listing 6 ensures that all sub-classes of the class with the name eName have
an attribute with name pName before that attribute is pulled up. Both parameters, eName and pName, are
matched by the graph transformation engine automatically.

Listing 6: OCL-NAC for pulling up attributes specified in the context of the class diagram

self . entitys−>select ( e | e . name = eName ) . specialization−>collect ( g | g . specific )
−>forAll ( e | e . ownedAttribute−>exists ( p | p . name = pName ) )

Furthermore, in this case study, the order in which the three rules are executed has a direct effect on the
quality of the resulting model. In this sense, pulling up attributes (rule 1) should have priority over extracting
super classes (rule 2) and this one over creating root classes (rule 3). Besides, for rules 2 and 3, the largest
set of classes containing a common attribute should be chosen. Such a definition of rule priority is not
directly possible in our approach as we choose an applicable rule at random. Therefore, this prioritization
must be reflected in the specification of the objectives. We do so by putting an additional weight on the
number of attributes when calculating the number of entities in the model, resulting in the OCL objective
shown in Listing 7, referring to all entities and attributes in the model, respectively.

Listing 7: OCL objective for calculating the weighted number of classes (entity) and attributes (property)

properties−>size ( ) * 1 . 1 + entities−>size ( )

In fact, in comparison with other approaches that provide solutions to this problem [30], defining such a
prioritization in the objectives can prove to be more flexible as we can easily add new objectives or modify
existing ones in order to obtain a different refactoring, while other approaches need to change the rules
directly which requires a deeper understanding of the inter-dependencies between the rules.

RQ2. To evaluate the overhead of our approach, we compare the runtime performance of our approach with
the performance of a native implementation in the MOEA framework for the Stack case study. The native
implementation only uses classes from the MOEA framework and encodes the Stack problem as a sequence
of binary variables or bit sets, respectively. While the Integer value of the binary variable indicates how
much load is shifted, the position of the binary variable in the sequence indicates from which stack the load
is shifted. Therefore we have as many binary variables as there are stacks in the model. In addition, one bit
in each binary variable is added as a discriminator for indicating whether the load is shifted to the left or to
the right. The number of bits to represent the load value is based on the highest load in the provided stack
instance, e.g., to represent 15 we need 4 bits (1111) and to represent 16 we need 5 bits (10000).
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To compare the two approaches, both are run with the same algorithm, NSGA-II, and with the same
number of evaluations. The number of variables is set to the number of stacks. However, due to the differ-
ences in the encoding, we can not use the exact same mutation operators. In our approach we vary the load
parameter and introduce placeholders as explained in Section 3. In the native approach, we apply a bit-flip
mutation with the same probability as our parameter mutation and apply a mutation operator that sets one
of the variables to zero with the same probability as the placeholder mutation. We let the load parameter in
our approach vary between zero and the highest number that can be represented in the native solution. To
execute the experiment, we fix the problem complexity with 100 stacks having a load between 0 and 200
and stop after 10000 evaluations. To gain insight into the performance, we vary the population size and the
number of iterations respectively, the sum always being 10000 evaluations, so that the number of evaluations
equals the number of iterations times the population size. Each execution consists of 20 algorithm runs.

Figure 6 depicts the results retrieved from these executions. The solid lines represent the average run-
time of all runs while the vertical lines through each point indicate the minimum and the maximum runtime
encountered. From the experiments we can observe that the native encoding has a stable runtime perfor-
mance between one and three seconds while the runtime performance of our approach has more variation
in each execution and grows linearly with the population size. Furthermore, our approach performs slower
in all execution scenarios. This observed loss in performance can be explained two-fold. First, there is a
slight difference in the performance of the applied mutation operators. While the bit-flip operator is really
fast, the creation of a random parameter is slightly more expensive due to cost associated with creating ran-
dom values. Second and more importantly, by using graph transformation rules instead of more dedicated
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Fig. 6: Comparison of total runtime: Native encoding vs MOMoT

Iterations Iteration Average Population Creation

1000 66.64ms 0.10% 678ms 1.03%
500 107.98ms 0.20% 1002ms 1.86%
250 265.45ms 0.40% 2185ms 3.29%
125 518.85ms 0.80% 3991ms 6.15%
80 868.07ms 1.25% 5374ms 7.74%
40 2881.34ms 2.50% 17253ms 14.97%
20 6628.76ms 5.00% 24276ms 18.31%
10 24791.99ms 10.0% 75974ms 30.64%

Table 2: Population Creation Overhead

encodings, we inherit the complexity of graph pattern matching and match application, which are expensive
tasks on their own. This is especially evident when creating a large initial population in the first iteration,
where we have to find and apply a lot of random matches, which takes a large proportion of the overall
execution time. Table 2 depicts the runtime overhead introduced by the population creation compared to
the expected average runtime of an iteration. The calculation of random matches for each solution is also a
source of the variation of the overall runtime as it depends on which matches have been generated before.
Subsequent iterations of the algorithm where we create new solutions through re-combination and thus only
have to apply matches run much faster. So although Henshin uses constraint solving to tackle the problem
of finding pattern matches more quickly, a certain loss in performance can not be avoided.

Our approach is consequently applicable for model-based software engineering problems. However, due to
the complexity of graph pattern matching, there is a clear trade-off between the expressiveness provided by
MDE through meta-modeling and model transformations and the performance of a more dedicated encod-
ing. Inventing such a dedicated encoding is a creative process and is in most cases not as straight forward as
in the Stack case study. Furthermore, once a dedicated encoding has been defined, integrating changes may
become quite expensive. For instance, introducing a new manipulation that can reduce the load of a stack
by half through compression in the native encoding requires at least the addition of another discriminator bit
and the adaptation of the encoding interpretation done in the fitness function. By contrast, in our approach,
one only needs to implement the manipulation as a model transformation rule. The complexity of finding
a good, dedicated encoding becomes even more evident when many diverse manipulations with a varying
number of parameters of different data types need to be represented in the solution. Additionally, a dedi-
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cated encoding may make assumptions about the deployed search algorithm, hampering the switch between
different algorithms. Both of these drawbacks are mitigated in our approach, where the parameters and their
data types are part of a transformation rule and where the switch to a different algorithm can be done by
changing one line in the search configuration. Indeed, this ease of use is especially important for modelers,
who are familiar with MDE technologies such as meta-modeling, model transformations, and OCL, but may
find it challenging to express their problem with a dedicated encoding, corresponding operators and a fitness
function as well as converting the obtained solutions back onto model level. The use of dedicated encodings
is further complicated by the fact that there is often no agreed upon solution for solving a specific problem.
For instance, whereas the works in [25, 26] both address the problem of refactoring at design level using a
modeling approach, each of them proposes a different encoding.

Summing up, we conclude that while our approach is applicable for many problems, it is currently not
suited for time-critical problems due to the overhead introduced by the generic encoding based on model
transformations. Although such an encoding is useful for modelers, the cost-effectiveness of our encoding
needs to be analyzed further.

4.4. Threats to Validity

In this subsection, we elaborate on several factors that may jeopardize the validity of our results.

Internal validity — Are there factors which might affect the results of this case study? First, a prerequisite
of our approach is for the user to be able to create class diagrams (meta-models) and define rule-based
systems. While this task was simple for us as modelers, people from other domains may find these tasks
more challenging. Second, although we have sanity-checked all solutions, we only had a reference set of
optimal solutions for one example (the modularization case study). Further investigation may be needed
to ensure that our approach does not introduce problems hindering the algorithm from finding the optimal
solutions.

External validity — To what extent is it possible to generalize the findings? Even though we have selected
three case studies from different areas with varying degrees of complexity, the number of case studies may
still not be representative enough to argue that our approach can be applied on any model-based software
engineering problem. Therefore, additional case studies need to be conducted to mitigate this threat. Further-
more, we have used Henshin as model transformation language to express in-place model transformations.
This means that additional studies are needed in order to know how integrable other model transformation
languages are in our approach and to consider out-place model transformations. As part of our future work,
we plan to investigate these issues and try to define a minimal set of requirements on the kinds of notations
and transformation languages that are amenable to be directly addressed by our approach.

5. Related Work

With respect to the contribution of this paper, we discuss three main threads of related work. First, the
application of search-based techniques for generating model transformations from examples which has been
the first application target of search-based techniques concerning model transformations. Second, we discuss
approaches which apply search-based techniques to optimize models. Finally, we survey work done in the
related field of program transformation.

An alternative approach to develop model transformations from scratch is to learn model transforma-
tions from existing transformation examples, i.e., input/output model pairs. This approach is called model
transformation by example (MTBE) [31, 32, 33] and several dedicated approaches have been presented
in the past. Because of the huge search space when searching for possible model transformations for a
given set of input/output model pairs, search-based techniques have been applied to automate this complex
task [34, 35, 36, 37, 38, 39]. While MTBE approaches do not foresee the existence of model transformation
rules, on the contrary, the goal is to produce such rules, we discussed in this paper the orthogonal problem
of finding the best sequence of rule applications for a given set of transformation rules in combination with
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transformation goals. Furthermore, MTBE approaches are mostly concerned with out-place transforma-
tions, i.e., generating a new model from scratch based on input models, while we focussed in this paper on
in-place transformations, i.e., rewriting input models to output models.

Searching for transformation rule applications with search-based optimization techniques for high-level
change detection has been presented in [40]. In the scenario of high-level change detection, the input model
and the output model are given as well as the possible transformation rules. The goal is to find the best
sequence of rule applications which give the most similar output model when applying the rule applica-
tion sequence to the input model. In other words, the high-level change detection we have investigated
previously is a special case which is now more generalized in the proposed framework by having the pos-
sibility to specify arbitrary goals for the search. Another combination of model engineering and SBSE is
presented in [41], however, in this framework the possible changes to the models are not defined as trans-
formation rules, but are generally defined directly on the generic genotype representations of the models.
The authors in [42] propose a strategy for integrating multiple single-solution search techniques directly
into a model transformation approach. In particular, they apply exhaustive search, randomized search, Hill
Climbing, and Simulated Annealing. Another work reported in [43] also addresses the problem of finding
optimal sequences of rule applications, but they deal with population-based search techniques. Thereby,
this work is considered as a multi-objective exploration of graph transformation systems, where they apply
NSGA-II [13] to drive rule-based design space exploration. Our presented work has the same spirit as the
previous mentioned two approaches, however, our aim is to provide a loosely coupled framework which is
not targeted to a single optimization algorithm, but allows to use the most appropriate one for a given trans-
formation problem. Finally, the authors in [44] propose the use of SBSE in MDE for optimizing regression
tests for model transformations. In particular, they use a multi-objective approach to generate test cases, in
the form of models, that are the input for testing updated transformations.

Program transformation is a field closely related to model transformation [45], thus, similar problems
are occurring in both fields. One challenging program transformation scenario is to enhance the readability
of source code given certain metrics. In this context, we are aware of a related approach that discusses the
search-based transformation of programs [46, 47]. In particular, a set of rewriting rules is presented to opti-
mize the readability of the code and dedicated metrics are proposed and used as fitness function. As search
techniques random search, Hill Climbing, and genetic algorithms are used. Our approach follows a similar
idea of finding optimal sequences of rule applications, but in our case we are focussing on model structures
and model transformations instead of source code. However, we consider the instantiation of our framework
for the problem of program transformation in combination with model-driven reverse engineering tools [3]
as an interesting subject for future work to further evaluate our approach.

6. Conclusion and Future Work

In MDE, modelers represent problem domains by means of meta-models and model transformations are
used to manipulate their instances, i.e, models. Most model transformation approaches are rule-based and
require a form of rule orchestration, i.e., the specification of the rules ordering and the specification of rule
parameters if necessary. Depending on the number of rules, the number of parameters, and the objectives
that should be achieved by the transformation, finding a desired rule orchestration is a complex task. There-
fore, in this paper we have proposed to apply SBSE techniques to support the modeler in this task. More
specifically, we have presented an algorithm-agnostic approach that is able to support various optimization
techniques while remaining in the model engineering technical space. Furthermore, we have shown that our
approach produces correct and sound solutions w.r.t. the constraints and the objectives, and that it can be
applied for typical model-based software engineering problems. By staying in the model engineering tech-
nical space and using the transformation rules directly in the encoding for the search process, we produce
solutions that can be easily understood by modelers. However, when we consider models as graphs and
transformation rules as graph patterns that must be matched, the problem of finding and applying matches is
computationally expensive and reduces the runtime performance. Here we could clearly identify a trade-off

of expressiveness and runtime performance in the evaluation of our approach in comparison with traditional
encodings.
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Although first results seem promising, our approach faces some limitations which we plan to address in
the future. First of all, we will further investigate the limitations of our approach with respect to runtime per-
formance. In particular, we foresee to work on speeding-up the graph pattern matching and the interpretation
of OCL statements and we will investigate other performance measures such as the memory consumption.
Second, we have assumed that by staying in the model engineering technical space, modelers can directly
use our approach transparently. However, we want to explore more empirical case studies to evaluate the
usability of our approach and the cost-effectiveness of using a generic, more expressive but less performant
encoding. Third, we plan to provide mechanisms to guide the users of our framework in selecting appropri-
ate search configuration options. Suggestions might be made for example based on the number of objectives,
the number of constraints, and whether the ordering of the rules is important or not. Finally, we would like
to study the applicability of our approach in larger contexts, such as the proper selection of cloud patterns
when moving a legacy application to the cloud in order to improve its non-functional properties [48] and to
support approximate model transformations [49], i.e., trading precision for performance.
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